Радиация: естественный фон, безопасная доза, виды излучений, единицы измерения
Содержание:
- Оценка действия радиации на живые организмы
- Как именно радиация влияет на клетки?
- Нормы для человека
- Щит от радиации
- Вынужденные диагностические дозы рентген облучения
- Нормы согласно СанПин
- Альфа излучение
- Виды радиационного излучения
- Обзор источников информации по проблеме исследования
- Как происходит заражение радиацией
- Масштабы аварии ЧАЭС переоценены?
- Как измерить уровень излучения с помощью камеры смартфона
- 2.6. Защита от радиационного излучения
- Какие органы человека больше всего страдают от радиации?
Оценка действия радиации на живые организмы
Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.
Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).
1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.
1 Грей (Гр) = 1Дж/кг = 100 рад
Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).
1 Кл/кг= 3,88*103 Р
1 Р = 2,57976*10-4 Кл/кг
Доза в 1 Рентген — это образование 2,083*109 пар ионов на 1см3 воздуха
Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения.
То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.
Эквивалентная доза — это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется — Зиверт (Зв).
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией {amp}lt; 10 КэВ (нейтронное излучение) | 5 |
Нейтроны от 10 до 100 КэВ (нейтронное излучение) | 10 |
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) | 20 |
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) | 10 |
Нейтроны {amp}gt; 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий {amp}gt; 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.
Эквивалентная доза радиации — это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).
Как именно радиация влияет на клетки?
Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.
С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.
Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.
Нормы для человека
За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.
Физические величины в которых измеряется радиация
Радиационный фон
С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:
- Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
- Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
- Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.
Доза радиации которую получает человек в течении года Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.
Безопасная доза
Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).
Допустимая доза
Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.
Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.
Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.
При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.
Излучение которое можно полечить в полёте
Смертельный уровень облучения
Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.
Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.
Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.
Доза. Зиверт | Воздействие на человека |
1–2 | Лёгкая форма лучевой болезни. |
2–3 | Лучевая болезнь. Смертность в течение первого месяца до 35%. |
3–6 | Смертность до 60%. |
6–10 | Летальный исход 100% в течение года. |
10–80 | Кома, смерть через полчаса |
80 и более | Мгновенная смерть |
Щит от радиации
Для защиты от гамма-излучения наиболее эффективны тяжелые элементы, такие как свинец. Чем больше номер элемента в таблице Менделеева, тем сильнее в нем проявляется фотоэффект. Степень защиты зависит и от энергии частиц излучения. Даже свинец ослабляет излучение от цезия-137 (662 кэВ) лишь в два раза на каждые 5 мм своей толщины. В случае кобальта-60 (1173 и 1333 кэВ) для двукратного ослабления потребуется уже более сантиметра свинца. Лишь для мягкого гамма-излучения, такого как излучение кобальта-57 (122 кэВ), серьезной защитой будет и достаточно тонкий слой свинца: 1 мм ослабит его раз в десять. Так что противорадиационные костюмы из фильмов и компьютерных игр в реальности защищают лишь от мягкого гамма-излучения.
Бета-излучение полностью поглощается защитой определенной толщины. Например, бета-излучение цезия-137 с максимальной энергией 514 кэВ (и средней 174 кэВ) полностью поглощается слоем воды толщиной в 2 мм или всего 0,6 мм алюминия. А вот свинец для защиты от бета-излучения использовать не стоит: слишком быстрое торможение бета-электронов приводит к образованию рентгеновского излучения. Чтобы полностью поглотить излучение стронция-90, нужно менее 1,5 мм свинца, но для поглощения образовавшегося при этом рентгеновского излучения требуется еще сантиметр!
Вынужденные диагностические дозы рентген облучения
Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.
Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека. Но все же попытаемся привести усредненные цифры доз, которые может получать пациент
Но все же попытаемся привести усредненные цифры доз, которые может получать пациент
Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:
- цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
- плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
- рентгенография органов грудной полости: 0,15-0,4 мЗв.;
- дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.
Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.
Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.
Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.
Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.
Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.
Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.
Процедура | Эффективная доза облучения | Сопоставимо с природным облучением, полученным за указанный промежуток времени |
Рентгенография грудной клетки | 0,1 мЗв | 10 дней |
Флюорография грудной клетки | 0,3 мЗв | 30 дней |
Компьютерная томография органов брюшной полости и таза | 10 мЗв | 3 года |
Компьютерная томография всего тела | 10 мЗв | 3 года |
Внутривенная пиелография | 3 мЗв | 1 год |
Рентгенография желудка и тонкого кишечника | 8 мЗв | 3 года |
Рентгенография толстого кишечника | 6 мЗв | 2 года |
Рентгенография позвоночника | 1,5 мЗв | 6 месяцев |
Рентгенография костей рук или ног | 0,001 мЗв | менее 1 дня |
Компьютерная томография – голова | 2 мЗв | 8 месяцев |
Компьютерная томография – позвоночник | 6 мЗв | 2 года |
Миелография | 4 мЗв | 16 месяцев |
Компьютерная томография – органы грудной клетки | 7 мЗв | 2 года |
Микционная цистоуретрография | 5-10лет: 1,6 мЗв Грудной ребенок: 0,8 мЗв | 6 месяцев 3 месяца |
Компьютерная томография – череп и околоносовые пазухи | 0,6 мЗв | 2 месяца |
Денситометрия костей (определение плотности) | 0,001 мЗв | менее 1 дня |
Галактография | 0,7 мЗв | 3 месяца |
Гистеросальпингография | 1 мЗв | 4 месяца |
Маммография | 0,7 мЗв | 3 месяца |
Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности. Некоторые люди ошибочно причисляют этот метод к рентгеновским
Некоторые люди ошибочно причисляют этот метод к рентгеновским.
Нормативы принятого закона о радиационной безопасности допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.
Облучение при рентгене — риски, дозы, техника безопасности, видео:
Лотин Александр Владимирович, врач-рентгенолог
80, всего, сегодня
(51 голос., средний: 4,55 из 5)
Нормы согласно СанПин
- Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
- В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
- Для продуктов норма радиации прописана детально, по каждому виду отдельно.
Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.
Обязательно оценивается зараженность стройматериалов: уран, торий, калий в сумме должны составлять не более 370 Бк/кг. Оценивается и участок под строительство (промышленное, индивидуальное): гамма-лучи у земли – не больше 0,3 мкЗв/ч, радон – не больше 80 мБк/кв.м*с.
Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.
Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.
Бананы содержат калий-40. Однако, чтобы получить количество, которое будет опасно, необходимо употребить в пищу миллионы этих продуктов.
Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы). Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием
Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.
Альфа излучение
- излучаются: два протона и два нейтрона
- проникающая способность: низкая
- облучение от источника: до 10 см
- скорость излучения: 20 000 км/с
- ионизация: 30 000 пар ионов на 1 см пробега
- биологическое действие радиации: высокое
Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.
Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.
Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.
Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.
Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.
Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.
Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.
Виды радиационного излучения
Радиация может быть нескольких различных видов, каждый из которых характеризуется собственными поражающими факторами. Радиационный фон, который присутствует на Земле, подразделяется на естественный (имеющий природное происхождение) и искусственный (имеющий техногенное происхождение). Так, любой человек постоянно находится в поле того или иного источника радиации.
Реакция ядерного распада широко применяется для получения энергии. На её основе построены все АЭС. Ядерное топливо обладает поразительной эффективностью и энергоёмкостью. Так, чтобы нагреть 100 тонн воды, потребуется радиоактивный изотоп массой всего лишь 1 г.
Радиационные волны подразделяются на:
- альфа-волны;
- бета-волны;
- гамма-волны;
- нейтронное излучение.
Альфа-излучение возникает при ядерном распаде тяжёлых химических элементов, среди которых уран, радий, торий и прочие. Их зона поражения ограничена небольшим расстоянием, считаемым от места возникновения: в воздухе — примерно 8−10 см, в биологических средах — всего лишь 0,01−0,05 мм.
Альфа-волны не могут проникнуть даже сквозь лист обыкновенной бумаги и клетки ороговевшего эпителия. Однако если частицы всё же попадут в человеческих организм, например, посредством участков кожи с нарушенной целостностью покровов или через ротовую полость, то, проникнув в кровяное русло, они разнесутся по всему организму и осядут преимущественно в эндокринных железах и лимфатических узлах, что приведёт к внутреннему отравлению, тяжесть которого будет зависеть от полученной дозы.
Бета-излучение представляет собой поток электронов при ядерном распаде радиоактивных элементов. Бета-частицы способны проникать в человеческих организм на расстояние до 20 см. Бета-излучение нашло широкое применение в лучевой терапии при лечении онкологических заболеваний.
Нейтронное излучение — поток электрически нейтральных частиц. Для него характерны наибольшая сила и глубина проникновения. Данные волны применяются в качестве ускорителя других частиц в научных целях на промышленных предприятиях, а также в различных лабораторных исследованиях.
Читать также Прибор для измерения суммарного уровня радиации
Гамма-излучение также обладает достаточно высокой проникающей способностью. Оно не несёт в себе заряженных частиц и, следовательно, не попадает под действие магнитных и электрических полей. Применяется в следующих областях:
- Медицина: лучевая терапия.
- Пищевая промышленность: консервирование.
- Отрасль космической промышленности.
- Геофизические исследования.
Гамма-частицы способны вызывать острую лучевую болезнь (ОЛБ) при единичных больших дозах облучения, и хроническую — при длительном воздействии ионизирующего фактора.
Обзор источников информации по проблеме исследования
Всем известно, что существует естественный радиационный фон (ЕРФ), с которым мы живем с рождения. Как утверждают ученые, задолго до того, как на земле возникла жизнь, на планете шел распад урана, и продукты этого распада постоянно выделялись из земной коры.
Сегодня мы с вами живём в век повышенной радиоактивности, и, величина допустимого уровня в 0,1- 0,2 мкЗв/ч (10- 20 мкР/с) считается нормальной, уровень 0,2- 0,6 мкЗв/ч (20- 60 мкР/ч) считается допустимым, а уровень свыше 0,6-1,2 мкЗв/ч (60- 120 мкР/ч) признан повышенным . Данные приведены согласно рекомендации Международной комиссии по радиационной защите (МКРЗ) и Всемирного общества здравоохранения (ВОЗ). Надо понимать, что искусственно создаваемые источники излучения (например, АЭС, рентгеновские исследования в поликлиниках, путешествия на самолетах и многое другое) постоянно повышают уровень естественного радиационного фона и поэтому требуется его корректировка.
Но об этом мало кто знает. Можно годами жить в радиоактивной зоне и не знать об этом. А последствия облучения нам хорошо известны, и этим пользуются средства массовой информации. Например, выдержка из новостной ленты одного интернет-сайта :
– 19.11.2012. Обнаружена партия радиоактивных автозапчастей из Японии. – 03.10.2012. Московская пенсионерка получила из банка радиоактивные купюры. – 18.08.2012. У берегов Японии выловлена рыба с радиоактивными изотопами цезия.
А это лишь крупинка информации! Многие люди, даже не усомнятся в ее правильности, такова психология человека, особенно невежественного. Может быть, оно так и есть!? Хочется привести еще немного интернет – фактов, как нам кажется, более близких к каждому из нас.
«… В Новосибирске во дворе частной школы, где учится более 500 детей, была обнаружена щебёнка из карьера Мочище, закрытого ещё десять лет назад из-за превышения предельно допустимого радиоактивного фона. По данному факту было возбужденно уголовное дело. О последствиях, которые имел для здоровья детей такой радиоактивный двор, судить можно будет только через 10-15 лет. Специалисты www.dozimetr.biz подчеркивают, что радиация действует незаметно и поражения, вызванные ею, имеют отложенный эффект. Тем не менее, это не мешает нечистым на руку предпринимателям добывать материал в опасном месте, продавая его ничего не подозревающим горожанам». «… В Кузьминках, в районе Волжского бульвара, нашли “радиационную мину”. Здесь хотели строить гаражи, стали исследовать грунт. Измерили – «фонит»! Излучение – 2830 микрорентген в час. Почти в 30 раз больше нормы! Очаг ликвидировали, но, сколько их еще осталось?»
И, в завершении факты, для всех жителей Москвы и Московской области, да и для приезжих тоже.
«… Старший специалист компании «Экостандарт» Евгений Кузьменко, проводил исследования по Москве. С дозиметром-радиометром ДКС – 96 он обнаружил: – в метро на переходе с “Театральной” на “Охотный ряд” радиация вдруг вырастает в три с лишним раза – до 20 мкР/час (это терпимый уровень, здесь «фонит» гранит); – у гранитных камней на Патриаршем мосту под ногами радиация 21 мкР/час, а возле колонн, которые скрепляют ограду, уже 34 (это серьезно, на 20 единиц выше обычного фона для этого места); – по Гоголевскому бульвару радиационный фон низкий – 6 – 7 мкР/час, но при подходе к памятнику Гоголю, фон у ступеней, ведущих к монументу – 38 – 40 мкР/час (!)»
Впечатляет, не правда ли? Как видите, даже в общественных местах в метро и в центре города можно столкнуться с «радиоактивными» проблемами. Вот посиди после этого на ступенях монумента великого писателя да поброди по Патриаршему пруду! Радиация из нашего организма, как известно, не выводится… Стоит ее накапливать? Ответ очевиден. А о последствиях влияния радиоактивного излучения на живой организм и говорить не приходится: все ясно без слов…(см. приложение №1).
Но прогулки по Москве, это лишь небольшая часть времени, которую вы посвящаете себе, а теперь, может, и вовсе забудете дорогу в эти места. А ведь мы можем и жить и работать в таких местах!
Как происходит заражение радиацией
Заражение радиацией возможно в любое время. Выделяют два варианта попадания вредных элементов в живые ткани.
Способы:
- Ядерный взрыв. Радиоактивные частицы распространяются по воздуху, выделяются из облака взрыва и образуются путем распада гамма-лучей. Возникает неблагоприятное воздействие на растения, людей и животных.
- Заражение возможно при возникновении аварий на предприятиях и утечке радиоактивных веществ. В зависимости от серьезности катастрофы, говорят о тяжести поражения человека.
Заражение радиацией приводит к разным сбоям в работе органов человека. У пострадавшего начинают проявляться разные заболевания, страдает иммунная система.
Масштабы аварии ЧАЭС переоценены?
Признано, что Чернобыльский взрыв был самой большой катастрофой, связанной с выбросом радиации в атмосферу (катастрофа Фукусимы), но не следует забывать, что выброс йода-131 из поврежденного реактора в 180 раз меньше, чем от ядерных взрывов и происшествий с 1963 года.
В двадцатом веке было много катастроф, в результате которых погибли сотни тысяч людей.
Например, около 20 000 человек сразу погибли после взрыва на заводе пестицидов в Бхопале, Индия, в 1984 году.
В 1975 году авария Дамбы Баньцяо на реке Ру в Китае принесла до 230 000 жертв (они не празднуют годовщину этих трагических событий).
Тогда как год за годом упоминается Чернобыльская катастрофа и отмечается ее годовщина, которая была в сотни или тысячи раз менее опасной.
Как измерить уровень излучения с помощью камеры смартфона
CMOS-матрицы в камерах смартфонов чувствительны не только к видимому свету. Они воспринимают и более короткие волны — рентгеновское и гамма-излучение.
За время выдержки для среднего фото (до 100 мс) следов воздействия такого излучения матрица не зафиксирует. К тому же его перекроет излучение в видимом диапазоне.
Но выход есть! Заклейте камеру черной изолентой. Она защитит от видимого излучения, но позволит рентгеновским и гамма-фотонам попадать на матрицу. После этого приложению останется только подсчитать количество фотонов и преобразовать это значение в понятные единицы измерения.
Насколько точно это работает? В 2014 году специалисты Австралийской организации по ядерной науке и технологиям (ANSTO) протестировали приложение Radioactivity Counter на Samsung Galaxy S2 и Apple iPhone 4S. Они определяли поглощенную предметами дозу излучения в мкГр/ч (для гамма-излучения единицы Гр (грей) и Зв эквивалентны).
Точный дозиметр должен показать линейный отклик на разные дозы радиации. Результаты не должны зависеть от ориентации смартфона в пространстве.
В целом смартфоны хорошо справились с задачей. Samsung показал линейный отклик при мощности излучения от 20 микрогрей в час (мкГр/ч, 10-6 Гр/ч), iPhone – от 30 мкГр/ч (в смартфоне Apple использовали фронтальную камеру, на которую мог попадать свет от экрана). От ориентации устройства показатели не зависели.
Мощность измеренной дозы обеспечивает годовую дозу радиации около 0,18-0,26 Зв (для гамма-излучения 1 Зв эквивалентен 1 Гр). Это в 180-260 раз больше безопасной по российским стандартам нормы.
Если смартфон обнаружил такое или более высокие значения, вы достаточно быстро и без последствий сможете убраться подальше от источника излучения.
Приложение Radioactivity Counter платное, но дозиметры, как правило, дороже. Версия для iOS, для Android.
На измерение стоит потратить не менее 10 минут. А лучше – целый час, так результат будет точнее.
Исследований на тему CMOS-матриц и фиксации излучения много: вот еще один пример. А здесь есть сравнение чувствительности CMOS-матриц смартфонов к излучению и тесты в разных приложениях: GammaPix, Radioactivity-Meter, RadSensor и уже упомянутом Radioactivity Counter.
2.6. Защита от радиационного излучения
При проведении контроля степени облучения сельскохозяйственных животных необходимо определять дозы внешнего облучения. Это можно делать с помощью дозиметрических приборов, но дозу можно определять и путем вычисления. В основе расчетных методов определения доз облучения лежат закономерности взаимодействия ионизирующих излучений с веществом. Вычисление доз облучения при внешнем гамма-облучении
Доза облучения прямо пропорциональна мощности дозы облучения и времени его воздействия:
D = P ´ t,
где D – доза облучения;
P – мощность дозы облучения;
t – время облучения.
Доза облучения от внешних точечных источников прямо пропорциональна мощности дозы облучения и обратно пропорциональна квадрату расстояния до него:
D= P ´ t / R2,
где R – расстояние до источника излучения, см;
D – доза облучения, Р;
P – мощность дозы излучения, Р/ч;
T – время облучения, часы.
Существует взаимосвязь между активностью (А) радиоактивных веществ и мощностью дозы излучения, создаваемой их гамма-излучением. Поэтому в формуле мощность дозы излучения (Р) можно заменить выражением (P = Kγ ´ A) и формула примет вид:
D = (Kγ ´ A´ t) / R2,
где D – доза облучения, Р;
Kγ – гамма-постоянная данного радиоизотопа (P´см2 / ч´мКи);
A – активность данного радиоизотопа, мКи;
t – время облучения, часы;
R – расстояние до источника излучения, см.
Доза облучения может быть уменьшена с помощью поглощения излучения материалами защитных экранов. Значение этого коэффициента зависит от вида излучения, его энергии, материала экрана и толщины. Для гамма-излучения его можно рассчитать по следующей формуле:
Kосл. = 2 ´ h / dпол.,
где Косл. – коэффициент ослабления излучения, (см. таблицу 28);
h – толщина защитного слоя материала, см;
dпол. – слой половинного ослабления материала, см, т.е. такая толщина слоя материала, которая ослабляет интенсивность излучения в 2 раза.
Таблица 28 – Средние значения коэффициента ослабления дозы радиации (Косл.) укрытиями и транспортом
Наименование укрытий и транспортных средств |
Косл. |
Открытое расположение на местности |
1 |
Открытые щели |
3 |
Производственные одноэтажные здания (цех) (коровник, свинарник, кирпичный без перекрытия) |
7 |
Коровник, свинарник кирпичный с ж/б перекрытием |
12,5 |
Жилые каменные дома |
|
Одноэтажные |
10 |
Подвал одноэтажного каменного дома |
40 |
Двухэтажные |
15 |
Подвал двухэтажного каменного дома |
100 |
Жилые деревянные дома |
|
Одноэтажные |
2 |
Подвал одноэтажного деревянного дома |
7 |
Погреб |
20 |
Защиту от облучения можно проводить следующими методами:
1.Защита временем. Следует находиться в зоне облучения минимальное время.
2.Защита расстоянием. Следует находиться от источника излучения на максимальном расстоянии.
3.Защита экранами. Следует использовать защитные средства из различных материалов (орг. стекло, дерево, кирпич, бетон, свинец, резина).
2.6.1. Принципы нормирования в области радиационной безопасности 2.6.2. Принципы радиозащитного питания
Предыдущая |
Какие органы человека больше всего страдают от радиации?
Органы, страдающие от радиации
Когда радиация вокруг нас воздействует на организм, то повреждаются клетки. Она разрушительна, потому что способна изменить ДНК и повредить клетки. Разрушения в организме может спровоцировать всего одна частица радиации. Давайте узнаем, какие органы страдают от облучения сильнее всего.
По сути, сложнее всего после радиации становится таким системам организма, где клетки активно делятся. К ним относятся:
- Костный мозг
- Легкие
- Слизистая желудка
- Кишечник
- Половые органы
При этом, если долго контактировать с предметом, излучающим небольшую радиацию, то организм будет поврежден. Так, даже любимый кулон или объектив фотоаппарата могут представлять опасность.
Важно понимать, что радиация может долго себя не проявлять, а потому человек может даже не подозревать о ней