Единицы измерения и дозы радиации
Содержание:
- Радиация и радиоактивность: определение и различия
- Разновидности излучения, свойства и характеристики
- Единицы измерения радиации
- Для чего нужен дозиметр дома
- Лучшие профессиональные дозиметры радиации
- Кюри
- Ионизирующее излучение
- Оценка действия радиации на живые организмы
- Радиоактивность — что это за явление
Радиация и радиоактивность: определение и различия
Прежде чем разбираться с вопросом о том, как и в чем измеряется радиация, нужно лучше понимать связанную с этой темой терминологию. Дело в том, что многие часто путают понятия «радиация» и «радиоактивность». Несмотря на схожесть, между этими терминам есть существенные различия.
Радиацию можно представить как поток частиц, находящихся в окружающем пространстве. До того как на пути повстречается какой-либо предмет, излучение будет произвольно распределяться в пространстве. А вот под радиоактивностью понимается способность предмета поглощать излучение и в дальнейшем самостоятельно испускать его.
Разновидности излучения, свойства и характеристики
Ученые выделили 3 вида излучения:
- альфа-излучение (α) — поток ядер гелия (их называют альфа-частицами);
- бета-излучение (β) — поток электронов;
- гамма-излучение (γ) — электромагнитное излучение с большой проникающей способностью.
На основе излучения выделяют 3 основных типа радиоактивного распада:
- альфа-распад;
- бета-распад;
- гамма-распад, или изомерный переход.
Известны также распады с испусканием протонов (одного или двух), нейтрона и кластерная радиоактивность.
Процесс радиоактивного распада может быть продолжительным. Если дочернее ядро, полученное в результат радиоактивного распада, также является радиоактивным, то со временем и оно распадается. Так продолжается, пока не образуется стабильное нерадиоактивное ядро.
При этом некоторые изотопы могут одновременно испытывать более одного вида распада.
Альфа-распад
Альфа-распад, т.е. поток положительно заряженных частиц, характерен для изотопов всех тяжелых элементов, начиная с висмута.
Альфа-частицы покидают ядро со скоростью от 9400 до 23700 км/с. При этом в воздухе при нормальных условиях альфа-излучение способно преодолеть лишь расстояние от 2,5 до 7,5 см.
Эффективно задержать радиоактивное излучение альфа-частиц можно несколькими десятками микрометров плотного вещества. К примеру, листом бумаги или даже ороговевшим слоем кожи — человеческим эпидермисом. Это делает его относительно безопасным для человека.
Однако если источник альфа-излучения все же попадет в организм (например, в виде пыли), это может привести к серьезным последствиям. Альфа-частицы наносят примерно в 20 раз больше повреждений, чем бета- и гамма-частицы той же энергии.
Рассмотрим правило смещения Содди для α-распада:
X ZA→Y Z-2A-4+H 24e
ПримерКак уже было описано ранее, процесс радиоактивного распада продолжается до тех пор, пока не образуется стабильное ядро. Рассмотрим такую цепочку на основе альфа-распада урана-238:
U 92238→α-распадT 90234h+H 24e→αR 88230a+H 24e→αR 86226n+H 24e→αP 84222o+H 24e→αP 82218b+H 24e
Бета-распад
Бета-излучение как отрицательное излучение малой массы обладает большей проникающей способностью, нежели альфа-частицы. Задержать его можно алюминиевой фольгой.
Среди всех видов радиоактивного распада бета-распад является наиболее распространенным. Он особенно характерен для искусственных радионуклидов.
Выделяют несколько подвидов бета-распада:
- бета-минус распад;
- бета-плюс распад;
- электронный захват.
Бета-минус распад представляет собой испускание из ядра электрона, образовавшегося в результате самопроизвольного превращения одного из нейтронов в протон и электрон. Такой электрон называют бета-минус частицей.
Правило смещения Содди для β—распада:
X ZA→Y Z+1A+e -1+ν¯e
Бета-плюс распад, или позитронный распад сопровождается испусканием из ядра позитрона (античастицы электрона), образовавшегося в результате самопроизвольного превращения одного из протонов в нейтрон и позитрон. Получившуюся частицу называют бета-плюс частицей.
Правило смещения Содди для β+-распада:
X ZA→Y Z-1A+e++νe
Позитронный распад всегда сопровождается электронным захватом. Ядро захватывает электрон из атомной оболочки и испускает нейтрино. Заряд ядра также уменьшается на единицу.
Правило смещения Содди для электронного захвата:
X ZA+e-→Y Z-1A+νe
Гамма-распад
Гамма-распад чаще называют изомерным переходом. Такое название обосновано существованием изомерных состояний ядер. Большинство ядер способны существовать в возбужденном состоянии очень малое количество времени — менее наносекунды. Некоторые ядра способны существовать дольше — микросекунды, сутки или даже года. Такие долгоживущие состояния и называют изомерными.
При гамма-распаде изомерные состояния ядер переходят в основное состояние с излучением одного или нескольких гамма-квантов.
Гамма-излучение обладает намного большей проникающей способностью, чем альфа- и бета-излучение. Оно не имеет электрического заряда, обладает огромной энергией и может быть остановлено только толстым слоем железобетона, стали, свинца или другого серьезного препятствия.
Единицы измерения радиации
Уже давно доказано, что радиационный фон присутствует практически везде, просто в большинстве мест его уровень признается безопасным. Уровень радиации измеряется в определенных показателях, среди которых основными считаются дозы – единицы энергии, поглощаемые веществом в момент прохождения ионизирующего излучения через него.
Основные виды доз и единицы их измерения можно перечислить в таких определениях:
- Доза экспозиционная – создается при гамма- или рентгеновском излучении и показывает степень ионизации воздуха; внесистемные единицы измерения – бэр или «рентген», в международной системе СИ классифицируется как «кулон на кг»;
- Поглощенная доза – единица измерения – грэй;
- Эффективная доза – определяется в индивидуальном порядке для каждого органа;
- Доза эквивалентная – в зависимости от разновидности излучения, рассчитывается исходя из коэффициентов.
Радиационное излучение может быть определено только при помощи специальных средств и приборов. При этом существуют определенные дозы и установленные нормы, среди которых строго конкретизированы допустимые показатели, негативные дозы воздействия на человеческий организм и смертельные дозы.
Для чего нужен дозиметр дома
В целях защиты населения после страшнейшей аварии на Чернобыльской АЭС была разработана специальная программа. В продаже появились недорогие дозиметры, дающие возможность быстро проверить радиационный фон, не имея специальных знаний. Покупаете ли вы земельный участок, или пришли на рынок, или проводите отпуск в горах, не будет лишним узнать об окружающей обстановке. Дозиметр бытовой прост в обращении, имеет компактные размеры и, как правило, может выполнять несколько действий:
- измеряет уровень радиации;
- определяет накопленную дозу излучения;
- сигнализирует при превышении уровня безопасности.
Домашний прибор для измерения радиации нашел наибольшее применение для проверки продуктов питания и строительных материалов
Еще одно заслуживающее внимание направление – детские игрушки
Особую опасность представляют те моменты, с которыми мы сталкиваемся каждый день. Это, в первую очередь, еда и наши дома. К сожалению, мы не знаем, в каких условиях выращиваются фрукты и овощи, на лугах с каким фоном пасется скот, на каких складах происходит хранение. Чернику и грибы, которые продают частники, также надо обязательно проверять.
То же касается и материалов, которые применяются при строительстве и обустройстве наших домов и участков. В частности, песок, щебень и другие нерудные материалы должны проходить проверку на радиацию, но не все честно это выполняют.
Самое большое количество промышленных товаров идет к нам из Китая. Это игрушки, одежда и обувь. Портативный счетчик Гейгера – Мюллера в данном случае обезопасит от неприятных сюрпризов в виде повышенного фона радиации.
О безопасности и нормах радиационного фона
Радиоактивное излучение не имеет вкуса или запаха, его невозможно потрогать или каким другим образом ощутить. Вторая опасность – оно способно накапливаться в организме. В-третьих, возможен переход из количества в качество, а конкретно – возникновение опасных заболеваний.
Среднее значение нормы радиации естественного фона, определено как 0,2 мкЗв/час (микрозиверт в час), что соответствует 20 мкР/час. Именно это количество внешнего ионизирующего облучения признано учёными безопасным для человека. А максимально допустимая величина уровня радиации для человека равна – 0,3 мкЗв/час или 30 мкР/час.
В высокогорных районах или в зонах с повышенным содержанием активности в почвах или воде радиационный фон будет приближаться к верхнему допустимому значению и даже может превышать его.
Покупка бытового дозиметра способна избавить вас от части предрассудков или страхов. Возникли сомнения по поводу продуктов – поднесли прибор и проверили. Покупаете новую квартиру – захватили прибор для измерения радиации и опять же проверили помещение.
А считает излучение встроенный счетчик Гейгера – один из самых надежных и недорогих датчиков по обнаружению радиоактивного излучения.
Лучшие профессиональные дозиметры радиации
Профессиональные устройства отличаются расширенным диапазоном значений от 0,05 до 999 мкЗв/ч, более прочным корпусом, широким функционалом, длительностью автономной работы. Также они обязательно вносятся в реестр средств измерений.
МКС-01СА1М
Измеритель ионизирующего излучения профессионального назначения работает от газоразрядного счетчика. Это карманное устройство с речевым выводом информации. Отличается высокой точностью благодаря безостановочному уточнению результата. Может работать в режиме мощности амбиентного эквивалента излучения альфа, бета частиц. Поддерживает поиск источников ионизирующего излучения.
Полученные данные выводятся на ЖК экран, оснащенный подсветкой с регулируемой длительностью. Управление осуществляется двумя кнопками на корпусе. Через меню можно выставить параметры звуковой или визуальной сигнализации. Питается от батареек. Также возможна покупка адаптера для питания от сети 220 В. Способен запоминать последние измерения при замене элементов питания до 5 лет. Имеет соответствующий государственный сертификат. Возможно подключение через USB к ПК.
Достоинства:
- Компактность;
- Есть речевое уведомление;
- Легкое управление;
- Высокая точность измерений;
- Гибкие настройки;
- Есть память.
Недостатки:
Не выявлены.
Соэкс Квантум
Профессиональный недорогой дозиметр радиации определяет уровень альфа, бета излучения. Устройство отличается высокой скоростью, точностью за счет двух счетчиков Гейгера СБМ-20-1.
Устройство имеет интуитивно понятное меню. Есть ЖК экран. Поддерживается визуальная, звуковая индикация. Поддерживает подсоединение к компьютеру для сохранения измеренных показаний. Помимо определения текущего уровня радиации способен вычислять накопленную дозу за определенный промежуток времени. Способ индикации пользователь может выбрать самостоятельно – непрерывный, графический, числовой. Питается от батареек либо сети 220 В. Погрешность не превышает 15%.
Достоинства:
- Недорогой;
- Возможность выбора способа индикации;
- Низкая погрешность;
- Есть синхронизация с компьютером;
- Стильный внешний вид;
- Время автономной работы достигает 700 часов.
Недостатки:
Могут возникнуть сложности с интерфейсом.
ДРГБ-01 ЭКО-1
Популярный российский дозиметр-радиометр относится к бюджетному ценовому сегменту. Он обладает достаточным набором характеристик, высокой надежностью и простотой эксплуатации. Используется для определения мощности амбиентного эквивалента дозы МАЭД, а также вычисления плотности потока бета-частиц. Подходит для контроля обстановки на рабочем месте, проверки багажа, определения уровня загрязнения продуктов питания, воды, металлов, сырья, транспорта.
Работает от газоразрядного счетчика СБТ-10А. Данные выводятся на ЖК дисплей. Есть тревожная сигнализация при превышении установленных значений. Способен измерять МЭД за 20 с. Имеет широкий энергетический диапазон от 15 кэВ до 3000 кэВ. Измерение значений происходит с запоминанием и автоматическим вычитанием фона. Поддерживает несколько режимов работы, при которых измеряет МЭД фотонного излучения, одноразовый проверки МЭД, определение потока бета частиц. Электропитание – от сети либо аккумулятора.
Достоинства:
- Точность;
- Многофункциональность;
- Быстрые измерения;
- Несколько режимов работы;
- Работает при температуре до -20°С;
- Широкий энергетический диапазон – 15 кэВ до 3000 кэВ.
Недостатки:
Не выявлены.
ИРД-02
Портативный дозиметр с функцией радиометра помогает находить источники радиоактивного загрязнения, оценивать содержание радионуклидов, измерять мощность амбиентного эквивалента дозы, плотность потока бета/альфа частиц. Работает от газоразрядного счетчика. Подходит для проверки помещений, открытых участков, снятия проблем грунта, продуктов, одежды и прочих объектов.
Отличается большей площадью входного окна, что позволяет работать с источниками небольших размеров. Поставляется в комплекте с имитатором излучения для тестирования работоспособности. Электропитание от аккумулятора. Способен быстро детектировать разные типы излучения. Есть звуковая сигнализация.
Достоинства:
- Надежность;
- Компактные размеры;
- Стильный дизайн;
- Есть имитатор излучения для проверки функциональности;
- Высокое быстродействие.
Недостатки:
Дорогой.
Лучшие кварцевые лампы
Кюри
Одной из единиц измерения радиации является кюри. Она не относится к системным (не принадлежит к системе СИ). В России ее используют в ядерной физике и медицине. Активность вещества будет равняться одному кюри, если за одну секунду в нем будет происходить 3,7 миллиардов радиоактивных распадов. То есть можно сказать, что один кюри равен трем миллиардам семистам миллионам беккерелей.
Такое число получилось благодаря тому, что Мария Кюри (которая и ввела в науку данный термин) проводила свои опыты на радии и взяла за основу его скорость распада. Но со временем физики решили, что числовое значение этой единицы лучше привязать к другой — беккерелю. Это позволило избежать некоторых погрешностей в математических расчетах.
Помимо кюри, часто можно встретить кратные или дольные единицы, такие как: — мегакюри (равен 3,7 на 10 в 16 степени беккерелей); — килокюри (3,7 тысячи миллиардов беккерелей); — милликюри (37 миллионов беккерелей); — микрокюри (37 тысяч беккерелей).
При помощи этой единицы можно выразить объемную, поверхностную или удельную активность вещества.
Ионизирующее излучение
Всё это- не фрагмент бреда сумасшедшего, взятый из истории его болезни и не краткий синопсис очередного голливудского боевика. Это окружающая нас реальность, которая называется радиоактивное или ионизирующее излучение, если коротко — радиация.
Явление радиоактивности в общих чертах было сформулировано французским физиком А. Беккерелем в 1896 году. Конкретизировал это явление и более подробно описал Э. Резерфорд в 1899 году. Именно он смог установить, что радиоактивное излучение неоднородно по своей природе и состоит, как минимум, из трёх видов лучей. Эти лучи по-разному отклонялись в магнитном поле и поэтому получили разное название. Проникающая способность альфа, бета и гамма-излучения различна.
Альфа-лучи
В магнитном поле они отклоняются так же, как и и положительно заряженные частицы. В дальнейшем было выяснено что это тяжёлые, положительно заряженные ядра атомов гелия. Возникают при распаде более сложных атомных ядер, например, урана, радия или тория. Обладают большой массой и относительно низкой скоростью излучения. Это обуславливает их невысокую проникающую способность. Они не могут проникнуть даже сквозь лист бумаги.
Но при этом альфа-частицы обладают очень большой ионизирующей энергией, что является причиной их способности наносить очень серьёзные повреждения на клеточном уровне. Из всех видов лучей именно альфа характеризуются самыми тяжёлыми последствиями в случае их воздействия на организм.
Это разрушающее влияние случается только в случае непосредственного контакта с предметами, излучающими альфа-лучи. На практике это происходит в результате попадания радиоактивных элементов внутрь организма через желудочно-кишечный тракт при приёме пищи или воды, а также при вдыхании воздуха, насыщенного радиоактивной пылью. Кроме того альфа-частицы могут легко проникнуть в организм через повреждения кожных покровов. Разносясь с током крови по всему организму, они обладают способностью накапливаться, оказывая сильнейшее разрушающее воздействие в течение многих лет.
Необходимо иметь в виду, что попадающие в организм радиоактивные вещества, не выводятся из него самостоятельно. Человеческий организм практически никак не защищён от подобного рода проникновений. Он не может нейтрализовать, переработать, усвоить или вывести самостоятельно радиоактивный изотоп, попавший внутрь.
Бета-лучи
Отклоняются в ту же сторону что и отрицательно заряженные частицы. Источником бета-излучения являются внутриядерные процессы, связанные с превращением протона в нейтрон и наоборот- нейтрона в протон. При этом происходит излучение электрона или позитрона. Скорость распространения довольно высокая и приближается к скорости света. Бета-излучение обладает гораздо большей проникающей способностью, чем альфа-излучение, но ионизирующее воздействие выражено гораздо слабее.
Бета-излучение легко проникает сквозь одежду, но тонкий лист металла или средней толщины деревянный брусок полностью останавливают его. В отличие от альфа-излучения, бета-лучи способны наносить дистанционное поражение на расстоянии нескольких десятков метров от источника радиации.
Гамма- лучи
Эти лучи оказались нейтрально заряженными и никак не отклонялись в магнитном поле. Гамма-излучение представляет собою электромагнитную энергию, излучаемую в виде фотонов. Эта энергия освобождается в момент изменения энергетического состояния ядра атома.
Данный вид излучения характеризуется высокой скоростью, равной скорости света и крайне высокой проникающей способностью. Чтобы остановить гамма-излучение необходимы толстые бетонные стены. Парадокс состоит в том, что данный вид лучей менее всего способен оказывать разрушающее действие на организм. Их ионизирующее воздействие в сотни раз слабее бета-излучения и в десятки тысяч раз слабее альфа-излучения. Но способность преодолевать значительные расстояния и высокие проникающие свойства делают эти лучи потенциально наиболее опасными для человека. Поэтому остановимся на этом виде излучения более подробно.
Оценка действия радиации на живые организмы
Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.
Эквивалентная доза — это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется — Зиверт (Зв).
Используемая внесистемная единица эквивалентной дозы — Бэр (бэр): 1 Зв = 100 бэр.
Коэффициент k | |
Вид излучения и диапазон энергий | Весовой множитель |
Фотоны всех энергий (гамма излучение) | 1 |
Электроны и мюоны всех энергий (бета излучение) | 1 |
Нейтроны с энергией < 10 КэВ (нейтронное излучение) | 5 |
Нейтроны от 10 до 100 КэВ (нейтронное излучение) | 10 |
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение) | 20 |
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение) | 10 |
Нейтроны > 20 МэВ (нейтронное излучение) | 5 |
Протоны с энергий > 2 МэВ (кроме протонов отдачи) | 5 |
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) | 20 |
Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.
Для более лучшего понимания, можно немного по-другому дать определение «эквивалентной дозы радиации»:
Эквивалентная доза радиации — это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).
Радиоактивность — что это за явление
Понятие «радиоактивность» было введено Марией Склодовской-Кюри. Оно тождественно понятию радиоактивный распад.
В определении присутствует термин изотоп. Прежде чем рассмотреть его, вспомним определение нуклида.
Для обозначения определенного нуклида используют запись вида
X ZA,
где X — символ химического элемента, A — массовое (нуклонное) число, Z — зарядовое (протонное) число.
Количество нейтронов в ядре N=A−Z
Это значит, что в изотопах одинаковое число протонов, но разное число нейтронов.
Всего известно более двух тысяч радиоактивных изотопов. Для сравнения, стабильных открыто около 280.
Ученые разделяют нуклиды на стабильные и нестабильные. Нестабильные, также известные как радионуклиды, со временем распадаются. Стабильные же способны существовать в неизменном виде неопределенно долгий промежуток времени.
Суть явления радиоактивности заключается в том, что при распаде ядра нестабильного атома из него с большой скоростью вылетает целое число частиц с высокой энергией. Вещества, которые содержат радиоактивные ядра, называют радиоактивными.
В современной химии выделяют естественную и искусственную радиоактивность.
Примером естественной радиоактивности служит солнечная радиация. В ядре солнца постоянно происходят термоядерные реакции, в ходе которых водород превращается в гелий.
Техногенная радиоактивность применяется людьми. Например, на атомных электростанциях электрическую энергию получают за счет искусственно созданных ядерных реакций.
В результате экспериментов было установлено, что в периодической системе Менделеева радиоактивны все элементы, начиная с висмута. Их порядковый номер больше 82.
Единицы измерения
В химии существует несколько единиц измерения радиоактивности:
- беккерель;
- кюри;
- резерфорд.
В Международной системе единиц (СИ) единицей измерения активности радионуклида является беккерель. На русском языке он обозначается как Бк, в международном формате — Bq.
Эту единицу назвали в честь Антуана Беккереля, одного из первооткрывателей радиоактивности. Один Беккерель равен одному распаду в секунду.
Бк=с-1
В Международной СИ секунде в минус первой степени равен не только беккерель, но и герц
Важно не путать их: беккерель используют для измерения случайных процессов распада, а герц — для периодических процессов. Их природа различна
Один Беккерель — это маленькая единица измерения, так что на практике принято использовать кратные единицы.
Внесистемная, но широко распространенная единица — кюри. Ее используют для измерения активности радионуклидов. На русском обозначается как Ки, в международных исследованиях — Ci. Названа она в честь Пьера Кюри и Марии Склодовской-Кюри.
Точно установлена связь между значениями Ки и Бк:
1 Ки = 3,7⋅1010 Бк
Перевести значения из Бк в Ки сложнее, т.к. соотношение приблизительно:
1 Бк ≈ 2,7027⋅10-11 Ки
Еще одна единица измерения, которой в современности пользуются редко — резерфорд. Его обозначают как Рд или Rd в русском и международном стандартах соответственно. Единица тоже названа в честь ученого — Эрнеста Резерфорда, также изучавшего природу радиоактивности.
Один резерфорд равен 10^6 распадам в 1 секунду. Точно равенство:
1 Рд = 1⋅106 Бк = 1 МБк
В дозиметрии используют свои единицы облучения:
- грэй;
- зиверт;
- бэр.
Поглощенную дозу в Международной СИ измеряют в единицах грэй (Гр). Один грэй равен энергии излучения в 1 Дж, поглощенной 1 кг вещества.
Эквивалентную дозу, т.е. произведение поглощенной дозы на коэффициент качества излучения, в Си измеряют в зивертах. Один зиверт эквивалентен излучению, создающему такой же биологический эффект, как и поглощенная доза в 1 Гр гамма-излучения или рентгеновского излучения.
1 Зв = 1 Джкг
Внесистемная единица измерения эквивалентной дозы — бэр. Бэр расшифровывается как «биологический эквивалент рентгена».
За один бэр принято считать такое количество энергии излучения, поглощенного 1 кг вещества, при котором биологическое воздействие соответствует поглощенной дозе в 1 рад гамма-излучения или рентгеновского излучения. То есть:
1 бэр=,01 Зв=100 эргг
Для измерения воздействия радиации используют также понятие мощность дозы. Это доза, полученная объектом за выбранную единицу времени.